The syllabus for GATE in 2014 will comprise of the similar pattern of questions although there are some basic alteration has been applied to the conduct of GATE 2014. The applicants have to appear for the general section of the examination and have to select any one of the 22 defined papers for examination. These 22 papers are catering to special branches of Engineering and will test the comprehension skills of the candidate applying from his/ her core branch of Engineering.

**Common Section:**

This section will comprise of two major sections to test the Verbal Ability and the Numerical Ability:

Verbal Ability: English Language Comprehension, Grammar, Sentence Formation, Critical Reasoning, Verbal Analysis, Grouping of Words and Structural Analysis.

Numerical Ability: Numerical Analysis, Data Computation, Estimation, and Numerical Interpretation Skills.

Subjective Section:

**Mathematical Physics:**** **Linear vector space; matrices; vector calculus; linear differential equations; elements of complex analysis; Laplace transforms, Fourier analysis, elementary ideas about tensors.

**Classical Mechanics:**** **Conservation laws; central forces, Kepler problem and planetary motion; collisions and scattering in laboratory and centre of mass frames; mechanics of system of particles; rigid body dynamics; moment of inertia tensor; noninertial frames and pseudo forces; variational principle; Lagrange’s and Hamilton’s formalisms; equation of motion, cyclic coordinates, Poisson bracket; periodic motion, small oscillations, normal modes; special theory of relativity – Lorentz transformations, relativistic kinematics, mass-energy equivalence.

**Electromagnetic Theory:**** **Solution of electrostatic and magnetostatic problems includingboundary value problems;dielectrics andconductors; Biot-Savart’s and Ampere’s laws; Faraday’s law; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization. Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

**Quantum Mechanics:**** **Physical basis of quantum mechanics; uncertainty principle; Schrodinger equation; one, two and three dimensional potential problems; particle in a box, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

**Thermodynamics and Statistical Physics:**** **Laws of thermodynamics; macrostates and microstates; phase space; probability ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose-Einstein condensation; first and second order phase transitions, critical point.

**Atomic and Molecular Physics:**** **Spectra of one- and many-electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; X-ray spectra; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR and ESR; lasers.

**Solid State Physics:**** **Elements of crystallography; diffraction methods for structure determination; bonding in solids; elastic properties of solids; defects in crystals; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids; metals, semiconductors and insulators; transport properties; optical, dielectric and magnetic properties of solids; elements of superconductivity.

**Nuclear and Particle Physics:**** **Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model – semi-empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; Alpha decay, Beta-decay, electromagnetic transitions in nuclei;Rutherford scattering,nuclear reactions, conservation laws; fission and fusion;particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

**Electronics:**** **Network analysis; semiconductor devices; Bipolar Junction Transistors, Field Effect Transistors, amplifier and oscillator circuits; operational amplifier, negative feedback circuits ,**active filters and oscillators**; rectifier circuits, regulated power supplies; basic digital logic circuits, sequential circuits, flip-flops, counters, registers, A/D and D/A conversion.